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Destruction of stable spiral waves in oscillatory media
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We studied spiral wave dynamics in an oscillatory reaction diffusion system. We find a new phenomenon:
without the appearance of any global modulation mode, stable spiral waves break up directly. By investigating
the one-dimensional version of the system and the isolated local dynamics, we find that the unstable focus in
the local dynamics plays an important role. For different boundary conditiB@s), we find a transition
between spiral waves and traveling waves for periodic BCs and drifting spiral wave for no-flux BC.
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Spiral waves are probably the most frequently encounwhere no-flux boundary conditions are used except where
tered structures in nonequilibrium systems; their existencstated otherwise. In numerical simulations, discretizations
can be analytically proved even in the simplesb reaction  with dx=dy=0.166 anddt=0.00556 have been used in an
diffusion system$1,2]. Practically, these waves are observedEuler scheme. The size of the system is 8@00. In the
in a wide range of systems, from chemical reactions andocal dynamics, there are three fixed poiri@:0), (1, 1) and
physiological media to slime mold aggregates and hydrody(b/(a—1), b/(a—1)). Whenb>0, only (0, 0) is stable, and
namics. In mathematical language, spiral waves can be obe local dynarmcs is excnablle. In this condmon.,_the model
served in excitable media, oscillatory media, and chaotic anfias been studied as a candidate for the transition between
stochastic media. Though a general theoretical understandir%:ible spiral waves and meandering spiral wdvésand in
of these spiral waves has been emerging through decades S case no spiral wave breakup is observed. However, when
efforts, there are still significant gaps in our understanding ofv€ change the parameterto be negative, there is no stable
spiral dynamics. fixed point. The saddle poinb((a—1),b/(a—1)) becomes

The transition from a regular pattern to spatiotemporaf@n unstable focus, and the local dynamics transitions to be
chaos in extended systems remains a challenge in nonline@gcillatory. The limit cycle that encompasses the unstable
dynamics[3]. Among these phenomena, the instability of focus is confined in the area (0;4)0,1). Throughout this
spiral waves in reaction diffusion systems is one of the mospaper, we seb=—0.02 ande =0.02. The spiral wave dy-
robust scenarios observed in experiments and in numeric&iamics is shown in Fig. 1. Figure(@ shows a typical tip
simulations[4—9]. The stability of stable spiral waves and trajectory ata=0.28 in the meandering regime. The defini-
the breakup of spiral waves have been widely studied in th&ons of R; andR, are shown also in this figure. WheRy,
literatures. Generally, stable spiral waves lose their stability= Ry, the system has a stable spiral wave solution; otherwise
by via a Hopf bifurcation that leads to meandering spiralit is in the meandering regime. In terms Bf andR,, the
waves[4]. There are two ways by which meandering spiralamplitude of the Hopf mode could be obtained Ry (R;
waves can go to break up. The first one is a longitudinatR;)/2 when it is larger than the radius of the primary
Eckhaus instability5—8] that modulates the spiral waves, so mode, otherwise it should be expressedRas(R,—R;)/2.
that the minimum of the local period in the system violatesFrom Fig. 1b), we know that a meandering spiral wave ex-
the dispersion relation and results in breakup. Depending oists in the midrange od investigated in this paper. There are
the behavior of the Eckhaus mode, the spiral waves magwo critical values of, outside the interval between the two
break up far away from or near to the cdB. The second critical values:
breakup is caused by a transverse instab[l@} Both the

breakup mechanism and the Hopf instability of the stable 2201 {b)
spiral wave require the appearance of a global mode. How- i
ever, in some systems, we can find another mechanism where 2001 \
stable spiral waves break up directly without involving any 1] \
global mode. In this paper, we study this case. 180+ / '
The model we used in this paper is a FHN-type reaction- > "-\
diffusion system 1601 11N
] \\
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FIG. 1. (8 The tip trajectory ata=0.28, b=-0.02, and
‘9_0 —u—v £=0.02. The definition oR, andR; are shown(b) The amplitude
at ' of the Hopf mode va with the sameb ande.
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faster than the large amplitude one. When the core of the
initial spiral wave expands to the chosen site, the large am-
plitude oscillation at that site is replaced by the small ampli-
tude one. Then the site stays at the small amplitude oscilla-
tion until its amplitude grows sufficiently large. Actually, the
dark area left behind the tifrig. 2(@)] is full of such a small
amplitude oscillation. New wave fronts are observed only
when the amplitude of the oscillation is restored to the nor-
mal value. The sites in this dark area do not oscillate coher-
(d) (€) ently; as a result spatial-temporal chaos will appear in this
region. The outward movement of the tip of the initial spiral

~ 0.8

?_ wave is caused by the collapse of the large oscillation to the
S o4 small one that cannot send the system back to its normal
= value immediately.

O 100 200 300 %0 50 00 150 0-0pHeIIBLIIIL The similar core expansion was investigated by Meron
x t t [10] and Sabbagill] in excitable media. The theoijy0]
FIG. 2. The stable spiral wave directly breaks uat0.252. presented by Meron attributes the core expansion to the wave

(a) The spatial plot of the spiral wave shortly after the spiral wavefront interactions in an oscillatory recovering medl_u_m. Sab-
is initialized. The bright region indicates the high valuewf(p) ~ Pagh[11] found that the core expansion in a modified ver-
The spatial plot where the spiral wave breaks (@pThe tip trajec- ~ Sion of Barkley’s standard model. However, Sabbagh also
tory. The tip spirals out along the previous spiral arfd) The  pointed out that the oscillatory or damped oscillatory char-
evolution of the variable x at the tige) Time sequence for site acter in a dispersion curve would not necessarily lead to core
(100,150 located in the core region of initial spiral wave. expansion. That is, the mechanism of the core expansion is
still unknown. Due to the nature of the oscillatory medium,

meandering spiral waves transition to stable spiral waves. Wie core expansion observed in this paper is in the oscillatory
do not show the results in the middle part of the curve due téecovery, nut not in the damped recovery as excitable me-
the fact that the size of the core of the spiral wave is comdium does. There is another important difference to be ad-
parable to or larger than the size of the system. The resul@ressed. In the Sabbagh’s case, with the change of the con-
are similar to Fig. 1 in Ref{4] whereb>0 is studied; for trolling parameter, stable spiral waves first transition to
example, a meandering spiral wave with inwdaditward meandering spiral waves, then to the core expansion. How-
petal appears in the lefright) part of the meandering re- ever, in our paper the core expansion occurs after meander-
gime, and R grows exponentially toward the resonant pointing spiral waves transition to stable spiral waves. Therefore,
If we decrease into the stable spiral wave regime, we the investigation of the mechanism of the core expansion is
find an interesting phenomenon different from what is seemot trivial.
in excitable media: the stable spiral wave cannot be sustained The spatial-temporal chaotic motion shown in Fig)ds

and it direCtly breaks up no matter how the initial Spiral WaVeon|y a transient process. Depending on the boundary condi-
is generated. We show a case in Fig. 2. Figue ghows the  tions, the system has different fates. First, under a no-flux
spatial pattern soon after a spiral wave is generated. In thigondary condition, we use the S1-S2 method to initiate a
plot, the wave armibright area decays gradually into the gnira| \wave[Fig. 3(a)]. After a long run of transient spatio-

wave valley(dark areanot only in the direction of propaga- om0yl chaos, a spiral wave with its core near the boundary

tion (perpendicular to the wave fronbut also in the trans- is observedFi : . S
= . g. 3(©)]. The tip trajectory in Fig. @l) shows
verse directiortangential to the wave fronwhen the wave that the spiral wave is drifting along the boundary. The ra-

arm is near the tip of the spiral wave. As time goes on, the,. . e ! ) .
core of the spiral wave expands. Then after a while, thedlus of the tip of the drifting spiral wave is around 20, which

spiral wave is replaced by spatial-temporal chaos, which ocS nea_rly the same as that far=0.254, but the frequency.of
curs first in the core region of the initial spiral walia Fig. (e SPiral wave is higher than that far0.254 because of its
2(b)]. The power spectrurnot shown hergat any location drifting. l.{sually the dnftmg of a splral wave is cagsed by an
is of broadband type. external flelp[_12] or by the interaction bgtv_veen spiral waves.

To further describe the core expansion, we plot the tipHere the drifting of single spiral wave is induced by bound-
trajectory in Fig. 1c) and the time evolution of thevariable ~ ary [13,14. However, when we change the boundary condi-
of the tip in Fig. Zd) where the tip is defined by the isoch- tion to be periodic, a transition from a spiral wave to a trav-
roneu= 0.3 (we only record one tip at any time even for the eling wave is observeFig. 3b)]. It is necessary to mention
spatial-temporal chapsThe tip does not form a closed orbit that the total topological charge of the spiral waves under
and moves out along spiraling trajectories. The time seperiodic boundary conditions is zero. This conclusion can be
guence of a chosen site located in the core of the initial spiratonfirmed by the fact that the spiral wave can only be gen-
wave is shown in Fig. @). In Fig. 2e) there are two kinds of erated or annihilated in pairs with opposite chafgesitive
oscillations observed: small amplitude oscillations and larger negativé. The orientation of the traveling wave depends
amplitude oscillations. The small amplitude oscillation ison the initial condition.
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FIG. 3. Different fates of the spiral wave
when the boundary condition changes at
=0.252.(a) The initial spiral wave(b) A travel-
ing wave is realized under periodic boundary
condition.(c) Drifting spiral waves anchoring the
boundary under no-flux boundary conditiafal)
The tip trajectory under the no-flux boundary
condition.
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Actually, the small amplitude oscillation that results in the unstable focus, the isolated site will rotate several times
destruction of the stable spiral wave has its root in the isoaround the unstable focus before it reaches the asymptotic
lated local dynamics. We already mentioned that there existémit cycle. The number of rotations before reaching the limit
an unstable focus in the local dynamics. Its eigenvalues cagycle increases as the initial deviation decreases, and the

be expressed as time spent on one rotation increases as the deviation in-
creases. Figure(d) shows one example.
A=[x—1%(x—1)2+4(x+y)]/2, To further investigate the mechanism that leads stable spi-
ral waves to be destroyed, we study the one-dimensional
b(b—a+1) (1D) version of Eq.(1). The rightmost end obeys a no-flux
=— W' y=—xl/a. boundary condition while the leftmost end is fixed at the

unstable focugb/(a—1), b/(a—1)]. The discretizaion is
the same as that in the 2D simulation, and the size of the

gystem is 200. Actually for the stable spiral wave, its rotation

ain Fig. 4'. The real part of the eigenvalue describe_s the ra'[Eenter is time dependent. Within the parameter range we
of the deviation away from the unstable focus. It Increase%tudied, the rotation center falls on the unstable focus in this

\;V:h ;[2:9 'glg?fsgf ?ﬁ; Jeh‘?a;.”gggé?grﬁ] dp?hr:a dissfgglisfgzessystem. So the 1D system here describes the radial dynamics
gufar v Ity viatl u u YSpf stable spiral waves that emit waves from the rotation cen-

This velocity is much faster than the asymptotic limit CyCIeter. For the sake of simplicity, we do not consider curvature

shown in Fig. 4c). With an initial condition close to the effects in this paper. Due to continuity, the fixed value driv-
ing force has to drag nearby sites along with it. Once the

We plot the real and imaginary parts of the eigenvalue versu

0:30 (a) 22 (b) state of the neighbor site is close enough to its unstable fo-
__ 02 _ 20 cus, it will take some time to spiral out of it. Such an effect
S 0.20 Lé— 18 becomes stronger whendecreases. In Fig. 5, we show the
& 515 = transition from regular dynamics to irregular one caused by
01 1.6 this effect. Whera is large[a=0.337 in Fig. %a)], the wave
'(?.20 0.25 0.30 0.35 0.40 0.20 0.25 0.30 0.35 0.40 emitted by the fixed value boundary is propagating down-
0.40 a a d) stream with a constant period; the frequency is around 0.16.
0.35 (c) o8 However, when we decreaadbeyond a critical value around
0.30 0.337, the steady traveling wave cannot be sustained at a
8 0.25 s 04 constant period and the irregularity first appears near the
0.20 source. The time evolution for site No. 10 is shown in Figs.
0.15 0.0 5(c) and 8d) for a=0.337 and 0.336, respectively. In Fig.

0.200.250.300.350.40 0 50 100 150 200

¢ 5(c), after a short transient, the site reaches its asymptotic
a

periodic oscillation. In Fig. &), the site first oscillates at
FIG. 4. (a) The real part of the eigenvalue vs(@) The imagi- Small amplitude for a while, then jumps to large amplitude
nary part of the eigenvalue vs &) The angular velocity of the Oscillations. After that, the large amplitude oscillation and
isolated local dynamicgd) The time evolution with a small initial  the small amplitude oscillation appear alternately at random.
deviation from the unstable focus. The life span of the small amplitude oscillation decreases
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© value boundary condition has to be replaced by a quasiperi-
odic driving force at the leftmost end. The simulations of a
1D system with the quasiperiodic driving force do not show
any irregularity in the corresponding range afusing the
frequencies obtained from the 2D simulations. Therefore,
llH "'H 'Il though a traveling wave with a constant period cannot be
/ / sustained belova=0.336 in the 1D dynamics, there is no
U ool 1k0° (200 irregularity appearing in the 2D system yet. When the system
' @ transitions from a meandering spiral wave to a stable spiral
wave arounda=0.255, the stable spiral wave breaks up im-
mediately. Similar to a meandering spiral wave, a drifting
spiral wave, evolved from a stable spiral wave under a no-
flux boundary condition, cannot be described by the 1D sys-
J tem with fixed value driving force either. Instead, its 1D
50 100 150 200 version is that with a periodic driving force.
t The direct breakup of the stable spiral wave, according to
the mechanism discussed above, only occurs when the rota-
FIG. 5. The dynamics of the 1D systerte) The spatial-  tjon center of the spiral wave is located at the unstable focus.
temporal plot fora=0.337. No irregularity sets irtb) The spatial-  However, it is not limited to oscillatory media. In fact, even
temporal plot fora=0.336. The irregularity is observedc) The iy excitable systems, the phenomenon we observed in this
time evolution of site #10a=0.337.(d) The time evolution of the paper could be found if the isolated dynamics has a unstable
same sitea=0.336. focus.
In summary, we studied the spiral dynamics in an oscilla-
y reaction diffusion system. We find a new phenomenon:
é/vithout the appearance of any global modulation mode, the
know that the rotation center of the stable spiral wave canng table splral wave can directly bre_ak up. By mvestlgatmg the
D version of the system and the isolated local dynamics, we

maintain a periodic wave any longer whatis small enough. found that the unstable focus in the local dynamics plays a
The rotation center has to induce the small oscillation first inVer important role. It causes small am Iit?J/de osciIFI)ati}(;ns
the core region, and finally leads to the destruction of th y Imp : P

stable spiral wave. ethat finally lead the initial stable spiral wave to break up. We

In the 2D medium, the meandering spiral wave is stablealso find a transition between a spiral wave and a traveling

for 0.6>a>0.255. In this regime, the description of the 1D wave under periodic boundary conditions.
medium with a fixed value boundary condition is not valid. This work was supported by NIH Grant No.
Actually, to describe the meandering spiral wave, the fixedP50HL52319.

with the increase of the distance away from the drivingtor
source.
From the spatial-temporal dynamics in the 1D case, wi
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