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Destruction of stable spiral waves in oscillatory media
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We studied spiral wave dynamics in an oscillatory reaction diffusion system. We find a new phenomenon:
without the appearance of any global modulation mode, stable spiral waves break up directly. By investigating
the one-dimensional version of the system and the isolated local dynamics, we find that the unstable focus in
the local dynamics plays an important role. For different boundary conditions~BCs!, we find a transition
between spiral waves and traveling waves for periodic BCs and drifting spiral wave for no-flux BC.
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Spiral waves are probably the most frequently enco
tered structures in nonequilibrium systems; their existe
can be analytically proved even in the simplestl-v reaction
diffusion systems@1,2#. Practically, these waves are observ
in a wide range of systems, from chemical reactions a
physiological media to slime mold aggregates and hydro
namics. In mathematical language, spiral waves can be
served in excitable media, oscillatory media, and chaotic
stochastic media. Though a general theoretical understan
of these spiral waves has been emerging through decad
efforts, there are still significant gaps in our understanding
spiral dynamics.

The transition from a regular pattern to spatiotempo
chaos in extended systems remains a challenge in nonli
dynamics @3#. Among these phenomena, the instability
spiral waves in reaction diffusion systems is one of the m
robust scenarios observed in experiments and in nume
simulations@4–9#. The stability of stable spiral waves an
the breakup of spiral waves have been widely studied in
literatures. Generally, stable spiral waves lose their stab
by via a Hopf bifurcation that leads to meandering spi
waves@4#. There are two ways by which meandering spi
waves can go to break up. The first one is a longitudi
Eckhaus instability@5–8# that modulates the spiral waves, s
that the minimum of the local period in the system viola
the dispersion relation and results in breakup. Depending
the behavior of the Eckhaus mode, the spiral waves m
break up far away from or near to the core@8#. The second
breakup is caused by a transverse instability@9#. Both the
breakup mechanism and the Hopf instability of the sta
spiral wave require the appearance of a global mode. H
ever, in some systems, we can find another mechanism w
stable spiral waves break up directly without involving a
global mode. In this paper, we study this case.

The model we used in this paper is a FHN-type reacti
diffusion system
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where no-flux boundary conditions are used except wh
stated otherwise. In numerical simulations, discretizatio
with dx5dy50.166 anddt50.00556 have been used in a
Euler scheme. The size of the system is 3003300. In the
local dynamics, there are three fixed points:~0, 0!, ~1, 1! and
„b/(a21), b/(a21)…. Whenb.0, only ~0, 0! is stable, and
the local dynamics is excitable. In this condition, the mod
has been studied as a candidate for the transition betw
stable spiral waves and meandering spiral waves@4#, and in
this case no spiral wave breakup is observed. However, w
we change the parameterb to be negative, there is no stab
fixed point. The saddle point (b/(a21),b/(a21)) becomes
an unstable focus, and the local dynamics transitions to
oscillatory. The limit cycle that encompasses the unsta
focus is confined in the area (0,1)3(0,1). Throughout this
paper, we setb520.02 and«50.02. The spiral wave dy-
namics is shown in Fig. 1. Figure 1~a! shows a typical tip
trajectory ata50.28 in the meandering regime. The defin
tions of R1 and R2 are shown also in this figure. WhenR2
5R1 , the system has a stable spiral wave solution; otherw
it is in the meandering regime. In terms ofR1 andR2 , the
amplitude of the Hopf mode could be obtained byR5(R1
1R2)/2 when it is larger than the radius of the prima
mode, otherwise it should be expressed asR5(R22R1)/2.
From Fig. 1~b!, we know that a meandering spiral wave e
ists in the midrange ofa investigated in this paper. There a
two critical values ofa, outside the interval between the tw
critical values:

FIG. 1. ~a! The tip trajectory ata50.28, b520.02, and
«50.02. The definition ofR2 andR1 are shown.~b! The amplitude
of the Hopf mode vsa with the sameb and«.
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meandering spiral waves transition to stable spiral waves.
do not show the results in the middle part of the curve due
the fact that the size of the core of the spiral wave is co
parable to or larger than the size of the system. The res
are similar to Fig. 1 in Ref.@4# whereb.0 is studied; for
example, a meandering spiral wave with inward~outward!
petal appears in the left~right! part of the meandering re
gime, and R grows exponentially toward the resonant po

If we decreasea into the stable spiral wave regime, w
find an interesting phenomenon different from what is se
in excitable media: the stable spiral wave cannot be susta
and it directly breaks up no matter how the initial spiral wa
is generated. We show a case in Fig. 2. Figure 2~a! shows the
spatial pattern soon after a spiral wave is generated. In
plot, the wave arm~bright area! decays gradually into the
wave valley~dark area! not only in the direction of propaga
tion ~perpendicular to the wave front! but also in the trans-
verse direction~tangential to the wave front! when the wave
arm is near the tip of the spiral wave. As time goes on,
core of the spiral wave expands. Then after a while,
spiral wave is replaced by spatial-temporal chaos, which
curs first in the core region of the initial spiral wave@in Fig.
2~b!#. The power spectrum~not shown here! at any location
is of broadband type.

To further describe the core expansion, we plot the
trajectory in Fig. 1~c! and the time evolution of thex variable
of the tip in Fig. 2~d! where the tip is defined by the isoch
roneu50.3 ~we only record one tip at any time even for th
spatial-temporal chaos!. The tip does not form a closed orb
and moves out along spiraling trajectories. The time
quence of a chosen site located in the core of the initial sp
wave is shown in Fig. 2~e!. In Fig. 2~e! there are two kinds of
oscillations observed: small amplitude oscillations and la
amplitude oscillations. The small amplitude oscillation

FIG. 2. The stable spiral wave directly breaks up ata50.252.
~a! The spatial plot of the spiral wave shortly after the spiral wa
is initialized. The bright region indicates the high value ofu. ~b!
The spatial plot where the spiral wave breaks up.~c! The tip trajec-
tory. The tip spirals out along the previous spiral arm.~d! The
evolution of the variable x at the tip.~e! Time sequence for site
~100,150! located in the core region of initial spiral wave.
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faster than the large amplitude one. When the core of
initial spiral wave expands to the chosen site, the large a
plitude oscillation at that site is replaced by the small amp
tude one. Then the site stays at the small amplitude osc
tion until its amplitude grows sufficiently large. Actually, th
dark area left behind the tip@Fig. 2~a!# is full of such a small
amplitude oscillation. New wave fronts are observed o
when the amplitude of the oscillation is restored to the n
mal value. The sites in this dark area do not oscillate coh
ently; as a result spatial-temporal chaos will appear in t
region. The outward movement of the tip of the initial spir
wave is caused by the collapse of the large oscillation to
small one that cannot send the system back to its nor
value immediately.

The similar core expansion was investigated by Mer
@10# and Sabbagh@11# in excitable media. The theory@10#
presented by Meron attributes the core expansion to the w
front interactions in an oscillatory recovering medium. Sa
bagh @11# found that the core expansion in a modified ve
sion of Barkley’s standard model. However, Sabbagh a
pointed out that the oscillatory or damped oscillatory ch
acter in a dispersion curve would not necessarily lead to c
expansion. That is, the mechanism of the core expansio
still unknown. Due to the nature of the oscillatory mediu
the core expansion observed in this paper is in the oscilla
recovery, nut not in the damped recovery as excitable m
dium does. There is another important difference to be
dressed. In the Sabbagh’s case, with the change of the
trolling parameter, stable spiral waves first transition
meandering spiral waves, then to the core expansion. H
ever, in our paper the core expansion occurs after mean
ing spiral waves transition to stable spiral waves. Therefo
the investigation of the mechanism of the core expansio
not trivial.

The spatial-temporal chaotic motion shown in Fig. 2~b! is
only a transient process. Depending on the boundary co
tions, the system has different fates. First, under a no-
boundary condition, we use the S1-S2 method to initiat
spiral wave@Fig. 3~a!#. After a long run of transient spatio
temporal chaos, a spiral wave with its core near the bound
is observed@Fig. 3~c!#. The tip trajectory in Fig. 3~d! shows
that the spiral wave is drifting along the boundary. The
dius of the tip of the drifting spiral wave is around 20, whic
is nearly the same as that fora50.254, but the frequency o
the spiral wave is higher than that fora50.254 because of its
drifting. Usually the drifting of a spiral wave is caused by a
external field@12# or by the interaction between spiral wave
Here the drifting of single spiral wave is induced by boun
ary @13,14#. However, when we change the boundary con
tion to be periodic, a transition from a spiral wave to a tra
eling wave is observed@Fig. 3~b!#. It is necessary to mention
that the total topological charge of the spiral waves un
periodic boundary conditions is zero. This conclusion can
confirmed by the fact that the spiral wave can only be g
erated or annihilated in pairs with opposite charge~positive
or negative!. The orientation of the traveling wave depen
on the initial condition.
2-2
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FIG. 3. Different fates of the spiral wave
when the boundary condition changes ata
50.252.~a! The initial spiral wave.~b! A travel-
ing wave is realized under periodic bounda
condition.~c! Drifting spiral waves anchoring the
boundary under no-flux boundary condition.~d!
The tip trajectory under the no-flux boundar
condition.
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Actually, the small amplitude oscillation that results in t
destruction of the stable spiral wave has its root in the i
lated local dynamics. We already mentioned that there ex
an unstable focus in the local dynamics. Its eigenvalues
be expressed as

l5@x216A~x21!214~x1y!#/2,

x52
b~b2a11!

«~a21!2 , y52x/a.

We plot the real and imaginary parts of the eigenvalue ver
a in Fig. 4. The real part of the eigenvalue describes the
of the deviation away from the unstable focus. It increa
with the increase ofa. The imaginary part describes th
angular velocity of the deviation around the unstable foc
This velocity is much faster than the asymptotic limit cyc
shown in Fig. 4~c!. With an initial condition close to the

FIG. 4. ~a! The real part of the eigenvalue vs a.~b! The imagi-
nary part of the eigenvalue vs a.~c! The angular velocity of the
isolated local dynamics.~d! The time evolution with a small initial
deviation from the unstable focus.
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unstable focus, the isolated site will rotate several tim
around the unstable focus before it reaches the asymp
limit cycle. The number of rotations before reaching the lim
cycle increases as the initial deviation decreases, and
time spent on one rotation increases as the deviation
creases. Figure 4~d! shows one example.

To further investigate the mechanism that leads stable
ral waves to be destroyed, we study the one-dimensio
~1D! version of Eq.~1!. The rightmost end obeys a no-flu
boundary condition while the leftmost end is fixed at t
unstable focus@b/(a21), b/(a21)#. The discretizaion is
the same as that in the 2D simulation, and the size of
system is 200. Actually for the stable spiral wave, its rotat
center is time dependent. Within the parameter range
studied, the rotation center falls on the unstable focus in
system. So the 1D system here describes the radial dyna
of stable spiral waves that emit waves from the rotation c
ter. For the sake of simplicity, we do not consider curvatu
effects in this paper. Due to continuity, the fixed value dr
ing force has to drag nearby sites along with it. Once
state of the neighbor site is close enough to its unstable
cus, it will take some time to spiral out of it. Such an effe
becomes stronger whena decreases. In Fig. 5, we show th
transition from regular dynamics to irregular one caused
this effect. Whena is large@a50.337 in Fig. 5~a!#, the wave
emitted by the fixed value boundary is propagating dow
stream with a constant period; the frequency is around 0
However, when we decreasea beyond a critical value around
0.337, the steady traveling wave cannot be sustained
constant period and the irregularity first appears near
source. The time evolution for site No. 10 is shown in Fig
5~c! and 5~d! for a50.337 and 0.336, respectively. In Fig
5~c!, after a short transient, the site reaches its asympt
periodic oscillation. In Fig. 5~d!, the site first oscillates a
small amplitude for a while, then jumps to large amplitu
oscillations. After that, the large amplitude oscillation a
the small amplitude oscillation appear alternately at rando
The life span of the small amplitude oscillation decrea
2-3
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with the increase of the distance away from the drivi
source.

From the spatial-temporal dynamics in the 1D case,
know that the rotation center of the stable spiral wave can
maintain a periodic wave any longer whena is small enough.
The rotation center has to induce the small oscillation firs
the core region, and finally leads to the destruction of
stable spiral wave.

In the 2D medium, the meandering spiral wave is sta
for 0.6.a.0.255. In this regime, the description of the 1
medium with a fixed value boundary condition is not val
Actually, to describe the meandering spiral wave, the fix

FIG. 5. The dynamics of the 1D system.~a! The spatial-
temporal plot fora50.337. No irregularity sets in.~b! The spatial-
temporal plot fora50.336. The irregularity is observed.~c! The
time evolution of site #10,a50.337.~d! The time evolution of the
same site,a50.336.
d
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value boundary condition has to be replaced by a quasip
odic driving force at the leftmost end. The simulations o
1D system with the quasiperiodic driving force do not sho
any irregularity in the corresponding range ofa using the
frequencies obtained from the 2D simulations. Therefo
though a traveling wave with a constant period cannot
sustained belowa50.336 in the 1D dynamics, there is n
irregularity appearing in the 2D system yet. When the syst
transitions from a meandering spiral wave to a stable sp
wave arounda50.255, the stable spiral wave breaks up im
mediately. Similar to a meandering spiral wave, a drifti
spiral wave, evolved from a stable spiral wave under a
flux boundary condition, cannot be described by the 1D s
tem with fixed value driving force either. Instead, its 1
version is that with a periodic driving force.

The direct breakup of the stable spiral wave, according
the mechanism discussed above, only occurs when the
tion center of the spiral wave is located at the unstable foc
However, it is not limited to oscillatory media. In fact, eve
in excitable systems, the phenomenon we observed in
paper could be found if the isolated dynamics has a unst
focus.

In summary, we studied the spiral dynamics in an osci
tory reaction diffusion system. We find a new phenomen
without the appearance of any global modulation mode,
stable spiral wave can directly break up. By investigating
1D version of the system and the isolated local dynamics,
found that the unstable focus in the local dynamics play
very important role. It causes small amplitude oscillatio
that finally lead the initial stable spiral wave to break up. W
also find a transition between a spiral wave and a trave
wave under periodic boundary conditions.
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